

FIJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

A NEW GENERALIZATION OF δ -CLOSED SETS USING TWO DIFFERENT OPERATORS

Vaishnavy V^{*} & Sivakamasundari K

Department of Mathematics,

Avinashilingam Institute for Home Science and Higher Education for Women, India

DOI: 10.5281/zenodo.155246

ABSTRACT

The scope of this paper is to give a new generalization to δ -closed sets namely λ_g^{δ} -closed sets which involves the use of two different operators. Some interesting theorems involving λ_g^{δ} -closed sets are also discussed.

KEYWORDS: δ -closed sets, δ g-closed sets, $g\delta$ -closed sets, δ g*-closed sets, (Λ, δ) -closed sets, λ_g^{δ} -closed sets

INTRODUCTION

Ever since the notion of δ -closed sets in topological spaces was introduced by Velicko in 1968, several authors started to extend this concept via various types of generalizations^{[1][2][3][4][5][9][12]}. As an outcome of these generalizations, various forms of closed sets and interesting separation axioms came into existence. In 2004, Georgiou discussed an unique type of generalization of δ -closed set namely (Λ , δ)-closed set which is defined as the intersection of a $\Lambda \delta$ -set and a δ -closed set. A subset A of a topological space (X, τ) is called a $\Lambda \delta$ -set if $\Lambda \delta(A)=A$, where $\Lambda \delta(A)$ is the intersection of all δ -open sets containing A. $\Lambda \delta$ plays the role of an operator which is an alternative to the classical closure operator. In this paper, we have portrayed a new variety of generalization involving the classical closure operator and the operator Λ which is defined to be the intersection of all open sets containing A. The outcome of such a generalization is named to be λ_g^{δ} -closed sets. We have discussed the relationship of λ_g^{δ} -closed sets with some already existing sets in the literature followed by some interesting characterizations using few already existing spaces. Finally, the notion of λ_g^{δ} -open sets and some properties are discussed.

PREREQUISITES

Definition 2.1: A subset A of a topological space (X, τ) is called

- (1) **regular open**[11] if int(cl(A))=A.
- (2) δ -open[14] if it is the union of regular open sets, the complement of δ -open is called δ -closed.
- (3) $\bigwedge \text{set}[5] \text{ if } \bigwedge_{\delta}(A) = A, \text{ where } \bigwedge_{\delta}(A) = \bigcap \{ O \in \delta O(X, \tau) \mid A \subseteq O \}.$
- (4) (Λ , δ)-closed[5] if A = T \cap C, where T is a Λ_{δ} -set and C is a δ -closed set.
- (5) δg -closed[2] if cl_{δ}(A) \subseteq U whenever A \subseteq U and U is open in (X, τ)
- (6) δg^* -closed[3]if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) .
- (7) $\mathbf{g\delta}$ -closed[3]if cl(A) \subseteq U whenever A \subseteq U and U is δ -open in (X, τ).
- (8) $\delta gs\text{-closed}[6]$ if $\delta \text{-scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) .
- (9) $\mathbf{g\delta s\text{-closed}}[1]$ if $\operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open in (X, τ) .

Remark: The class of all regular closed(resp. δ -closed, (Λ, δ) -closed) sets are denoted by RC(X, τ)(resp. δ C(X, τ), (Λ, δ) C(X, τ)).

Definition 2.2: A subset A of a topological space (X, τ) is called

(1) weakly Hausdorff[3] if every singleton is δ -closed.

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

- (2) T_{3/4} -space[2] if every δg -closed set is δ -closed in (X, τ).
- (3) **\delta-door space**[13] if everysubset of (X, τ) is either δ -open or δ -closed in (X, τ).
- (4) **T** δ -space[3] if every $g\delta$ -closed set is δ -closed in (X, τ).
- (5) $_{\delta}T_{3/4}$ -space[1]if every g δ s-closed set is δ -closed in (X, τ).

λ_g^δ -CLOSED SETS IN TOPOLOGICAL SPACES

Definition 3.1: A subset A of a topological space (X, τ) is called λ_g^{δ} -closed set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is (Λ, δ) -open in X. The family of all λ_g^{δ} -closed sets of (X, τ) is denoted by $\lambda_g^{\delta} C(X, \tau)$.

Proposition 3.2: Every δ -closed set is λ_g^{δ} -closed but not conversely.

Proof: Let A be a δ -closed set and U be a (Λ, δ) -open set containing A. Since A is δ -closed, $cl_{\delta}(A) = A$. Therefore $cl_{\delta}(A) = A \subseteq U$ and hence A is λ_{g}^{δ} -closed.

Counter example 3.3: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$. Take $A = \{a\}$ then A is λ_g^{δ} -closed but not δ -closed as $\delta C(X, \tau) = \{X, \phi\}$.

Proposition 3.4: Every λ_g^{δ} -closed set is δg^* -closed but not conversely.

Proof: Let A be a λ_g^{δ} -closed set and U be a δ -open set containing A. Since every δ -open set is (Λ, δ) -open[5] and A is λ_g^{δ} -closed, $cl_{\delta}(A) \subseteq U$. Therefore A is δg^* -closed.

Counter example 3.5: Let $X = \{a, b, c, d\}$, $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}\}$. Take $A = \{a, c\}$ then A is δg^* -closed but not λ_g^{δ} -closed.

Proposition 3.6: Every λ_g^{δ} -closed set is $g\delta$ -closed but not conversely.

Proof: Since $cl(A) \subseteq cl_{\delta}(A)$, the proof follows that of Proposition 3.4.

Counter example 3.7: Let X and τ be defined as in Example 3.5. Take A = {b} then A is $g\delta$ -closed but not λ_g^{δ} -closed.

Proposition 3.8: Every λ_{g}^{δ} -closed set is δ gs-closed but not conversely.

Proof: Since δ -scl(A) \subseteq cl_{δ}(A), the proof follows that of Proposition 3.4.

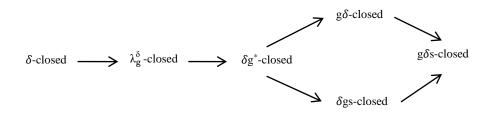
Counter example 3.9: Let X, τ and A be defined as in Example 3.7 then A is δ gs-closed but not λ_{g}^{δ} -closed.

Proposition 3.10: Every λ_g^{δ} -closed set is $g\delta s$ -closed but not conversely.

Proof:Since $scl(A) \subseteq cl_{\delta}(A)$, the proof follows that of Proposition 3.4.

Counter example 3.11: Let X, τ and A be defined as in Example 3.7 then A is $g\delta s$ -closed but not λ_g^{δ} -closed.

The newly defined family of λ_g^{δ} -closed sets properly fits between the family of δ -closed sets and δg^* -closed sets as observed from the following link.



Remark 3.12: Closedness(resp. g-closedness, α -closedness, semi-closedness, pre-closedness, δ g-closednes) is independent of λ_g^{δ} -closedness as observed from the following examples.

Example 3.13: Let X = {a, b, c} and τ = {X, ϕ , {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}. Take A = {a, b, d} then A is closed(resp. g-closed, α -closed, semi-closed, pre-closed and δ g-closed) but not λ_{g}^{δ} -closed in (X, τ).

Example 3.14: Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Take $A = \{a\}$ then A is λ_g^{δ} -closed but not closed(resp. g-closed, *\alpha*-closed, semi-closed, pre-closed and δ g-closed) in (X, τ) .

Theorem 3.15: Let A be a λ_g^{δ} -closed set in (X, τ) . Then $cl_{\delta}(A)$ -A does not contain a non-empty (Λ, δ) -closed set.

Proof: Suppose that A is λ_g^{δ} -closed and let F be a (Λ, δ) -closed set contained in $cl_{\delta}(A)$ -A. Now F^c is a (Λ, δ) -open set in X such that $A \subseteq F^c$. Since A is a λ_g^{δ} -closed, $cl_{\delta}(A) \subseteq F^c$. Thus $F \subseteq (cl_{\delta}(A))^c$. Also $F \subseteq cl_{\delta}(A)$ -A. Therefore $F \subseteq (cl_{\delta}(A))^c \cap cl_{\delta}(A) = \phi$. Hence $F = \phi$.

Proposition 3.16: If A is a (Λ, δ) -open set and a λ_{g}^{δ} -closed set of (X, τ) then A is a δ -closed set of X.

Proof: Since A is (Λ, δ) -open and λ_g^{δ} -closed, $cl_{\delta}(A) \subseteq A$. Hence A is δ -closed.

Theorem 3.17: If A is a λ_g^{δ} -closed set and (Λ, δ) -open and F is δ -closed in (X, τ) , then A \cap F is δ -closed.

Proof: Since A is λ_g^{δ} -closed and (Λ, δ) -open, A is δ -closed by Proposition 3.16. Since F is δ -closed in X, A \cap F is δ -closed in X.

Proposition 3.18: If A is a λ_{g}^{δ} -closed set in (X, τ) and $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a λ_{g}^{δ} -closed set.

Proof: Let U be a (Λ, δ) -open set of X containing B. Then $A \subseteq U$. Since A is λ_g^{δ} -closed, $cl_{\delta}(A) \subseteq U$. Also since $B \subseteq cl_{\delta}(A), cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A)$. Hence $cl_{\delta}(B) \subseteq U$ and therefore B is λ_g^{δ} -closed.

Theorem 3.19: Let A be a λ_g^{δ} -closed set of (X, τ). Then A is δ -closed iff $cl_{\delta}(A)$ -A is (Λ , δ)-closed.

Proof: Necessity: Let A be a δ -closed subset of (X, τ) . Then $cl_{\delta}(A) = A$ and so $cl_{\delta}(A)-A = \phi$, which is (Λ, δ) -closed.

Sufficiency: Let $cl_{\delta}(A)$ -A be (Λ, δ) -closed. Since A is λ_{g}^{δ} -closed, by Theorem 3.15, $cl_{\delta}(A)$ -A does not contain a non-empty (Λ, δ) -closed set which implies $cl_{\delta}(A)$ -A = ϕ . Therefore $cl_{\delta}(A) = A$ and hence A is δ -closed.

Characterizations of λ_g^{δ} -closed sets through existing spaces

Proposition 3.20: In a T_{3/4} -space, every δg -closed set is λ_g^{δ} -closed.

Proof: Let (X, τ) be a $T_{3/4}$ -space and let A be a δg -closed set in (X, τ) . In $T_{3/4}$ -space, the class of all δg -closed sets coincide with that of δ -closed sets. Therefore A is δ -closed in (X, τ) . Moreover, every δ -closed set is λ_g^{δ} -closed and hence A is λ_g^{δ} -closed in (X, τ) .

Proposition 3.21: In a δ -door space, every subset is either λ_g^{δ} -open or λ_g^{δ} -closed.

Proof: Let A be a subset of (X, τ) which is a δ -door space. Then every subset is either δ -open or δ -closed. Since every δ -open or δ -closed is λ_g^{δ} -open or λ_g^{δ} -closed respectively, we have A is either λ_g^{δ} -open or λ_g^{δ} -closed.

Proposition 3.22: In a weakly Hausdorff space, every singleton is λ_g^{δ} -closed.

Proof: Let (X, τ) be a weakly Hausdorff space. Then every singleton is δ -closed. Since every δ -closed set is λ_g^{δ} -closed, we have that every singleton is λ_g^{δ} -closed.

Proposition 3.23: The family of all $g\delta$ -closed sets and that of λ_g^{δ} -closed sets coincide in a T $_{\delta}$ -space.

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

Proof: Let A be a λ_g^{δ} -closed set. By Proposition 3.6, every λ_g^{δ} -closed set is a g δ -closed set. Therefore A is g δ -closed. Conversely, let A be g δ -closed. In T $_{\delta}$ -space, every g δ -closed set is δ -closed. Since every δ -closed set is λ_g^{δ} -closed, we have A is λ_g^{δ} -closed.

Proposition 3.24: In a $\delta T_{3/4}$ -space, the family of all $g\delta s$ -closed sets and that of λ_g^{δ} -closed sets coincide.

Proof: Let A be a λ_g^{δ} -closed set. By Proposition 3.10, every λ_g^{δ} -closed set is a g δ s-closed set. Therefore A is g δ s-closed. Conversely, let A be g δ s-closed. In $\delta T_{3/4}$ -space, every g δ s-closed set is δ -closed. Since every δ -closed set is λ_g^{δ} -closed, we have A is λ_g^{δ} -closed.

4. λ_g^{δ} -OPEN SETS IN TOPOLOGICAL SPACES

Definition 4.1: A subset A of a topological space (X, τ) is called λ_g^{δ} -open if its complement A^c is λ_g^{δ} -closed in (X, τ) . The family of all λ_g^{δ} -open sets in (X, τ) is denoted by λ_g^{δ} O(X, τ).

Lemma 4.2:[12] For a subset A of (X, τ) , $cl_{\delta}(X \setminus A) = X \setminus int_{\delta}(A)$.

Theorem 4.3: A subset A of a topological space (X, τ) is λ_g^{δ} -open if and only if $G \subseteq int_{\delta}(A)$ whenever $G \subseteq A$ and G is (Λ, δ) -closed.

Proof: Necessity: Assume that A is λ_g^{δ} -open. Then A^c is λ_g^{δ} -closed. Let G be a (Λ , δ)-closed set in (X, τ) such that G \subseteq A. Then G^c is (Λ , δ)-open in (X, τ) such that A^c \subseteq G^c. Since A^c iS λ_g^{δ} -closed, $cl_{\delta}(A^c) \subseteq$ G^c, equivalently G \subseteq int_{δ}(A^c).

Sufficiency: Conversely, assume that $G \subseteq \text{int}_{\delta}(A)$, whenever $G \subseteq A$ and G is (Λ, δ) -closed in (X, τ) . Let $A^c \subseteq F$, where F is (Λ, δ) -open. Then $F^c \subseteq A$. By criteria, $F^c \subseteq \text{int}_{\delta}(A) \Longrightarrow \text{cl}_{\delta}(A^c) \subseteq F$. Thus A^c is λ_g^{δ} -closed and hence A is λ_g^{δ} -open.

Proposition 4.4: If $int_{\delta}(A) \subseteq B \subseteq A$ and A is λ_{g}^{δ} -open in (X, τ) , then B is λ_{g}^{δ} -open in (X, τ) .

Proof: It follows from Lemma 4.2 and Proposition 3.19.

Theorem 4.5: If A is λ_g^{δ} -open in X if and only if G = X whenever G is (Λ, δ) -open and $int_{\delta}(A) \cup A^{c} \subseteq G$.

Proof: Necessity: Let A be λ_g^{δ} -open set and G be (Λ, δ) -open and $int_{\delta}(A) \cup A^c \subseteq G$. This implies $G^c \subseteq (int_{\delta}(A) \cup A^c)^c = (int_{\delta}(A))^c \cap A = (int_{\delta}(A))^c \setminus A^c = cl_{\delta}(A^c) \setminus A^c$. Since $A^c is \lambda_g^{\delta}$ -closed and G^c is (Λ, δ) -closed by Theorem 3.15, it follows that $G^c = \phi$ and hence G = X.

Sufficiency: Suppose that F is (Λ, δ) -closed and $F \subseteq A$. Then $int_{\delta}(A) \cup A^{c}\subseteq G \subseteq int_{\delta}(A) \cup F^{c}\subseteq G$. Since δ -open $\Rightarrow (\Lambda, \delta)$ -open, we get $int_{\delta}(A)$ is (Λ, δ) -open and F^{c} is (Λ, δ) -open. Hence $int_{\delta}(A) \cup F^{c}$ is (Λ, δ) -open. By hypothesis, $int_{\delta}(A) \cup F^{c} = X$ and hence $F \subseteq int_{\delta}(A)$. Therefore by Proposition 4.4, A is λ_{g}^{δ} -open in X.

Proposition 4.6: For each $a \in X$ either $\{a\}$ is (Λ, δ) -closed or $\{a\}$ is λ_g^{δ} -open in (X, τ) . That is, for any space $(X, \tau), X = (\Lambda, \delta)C(X, \tau) \cup \lambda_g^{\delta}O(X, \tau)$.

Proof: Suppose that $\{a\}$ is not (Λ, δ) -closed then $\{a\}^c$ is not (Λ, δ) -open and the only (Λ, δ) -open set containing $\{a\}^c$ is the space X itself. That is, $\{a\}^c \subseteq X$. Therefore, $cl_{\delta}(\{a\}^c) \subseteq X$ and so $\{a\}^c$ is λ_g^{δ} -closed and hence $\{a\}$ is λ_g^{δ} -open.

REFERENCES

- [1] Benchalli, S. S. and Umadevi I Neeli., "Generalized δ -semi closed sets in topological spaces", Int. J. of Mathematics, 24(2011), 21-38.
- [2] Dontchev, J. and Ganster, M., "On δ -generalized closed sets and T_{3/4}-spaces", Mem. Fac. Sci. Kochi Univ. Ser. Math., 17(1996), 15-31.

- [3] Dontchev, J., Arokiarani, I., Balachandran, K., "On generalized δ -closed sets and almost weakly Hausdorff spaces", Q & A in General Topology, 18(2000), 17-30.
- [4] Geethagnanaselvi, B. and Sivakamasundari, K., "A new weaker form of δ -Closed set in Topological Spaces", International Journal of Scientific Engineering and Technology, 5(1)(2016), 71-75.
- [5] Georgiou, D. N., Jafari, S. and Noiri, T., "Properties of (Λ, δ) -closed sets in topological spaces", Bollettino dell'Unione Matematica Italiana, Serie 8,7-B(2004), 745-756.
- [6] Jin Han Park, Dae Seob Song and Bu Young Lee., "On δgs-closed sets and almost weakly Hausdorff Spaces", Honam Mathematical Journal., 29(2007), 597-615.
- [7] Levine, N., "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly, 70(1963), 36-41.
- [8] Levine, N., "Generalized closed sets in topology", Rend. Circ. Math. Palermo, 19(1970), 89-96.
- [9] Meena, K. and Sivakamasundari, K., " $\delta(\delta g)^*$ -closed sets in topological spaces", International Journal of Innovative Research in Science, Engineering Technology, 3 (2014), 14749–14754.
- [10] Njastad, O., "On some classes of nearly open sets", Pasific J. Math., 15(1965), 961-970.
- [11] Stone, M., "Application of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc.,41(1937), 374-481.
- [12] Sudha, R. and Sivakamasundari K, "δg*-Closed sets in topological spaces", International Journal of Mathematical Archive, 3(3)(2012),1222-1230.
- [13] Sudha, R., A Study on Some Generalizations of δ -closed sets in Topological Spaces, Ph.D thesis, Avinashilingam University (2014).
- [14] Velicko, N. V., "H-closed topological spaces", Amer. Math. Soc. Transl., 78(1968), 102-118.